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The Renyi function for the logical time measure u of Brownian motion is found.
It is shown that this function, the Legendre transform of the multifractal spec-
trum of u, and the r-function derived by the reciprocal measure formalism are
not identical. More examples of u having similar anomalies are discussed.
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1. INTRODUCTION

Parisi and Frisch(23) introduced the concept of multifractality for probabil-
ity measures. By definition a measure u on J= [0, 1 ] has the multifractal
property, if the subsets Ja of points of J having identical local dimensions
a (see ref. 21) are fractal. In that case the dimension function dim Jx = f ( x )
is the multifractal spectrum of u. Many examples of multifractal measures
(see refs. 3. 6, and 20) have the function f(a) concave in some subinterval
of R+. The spectrum can then be found with the help of the so-called mul-
tifractal formalism and box counting arguments as follows

where ( *) is the Legendre transform operation, while T is a Renyi function
of the form
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Here, y = { A ( N ) } is a partition of the J consisting of equal intervals of size
AN = f1N, the summation involving the terms with u ( A , ) ^0. Since (2) uses
a partition that involves elements of fixed size, we shall reserve the name
of the box r-function for T, and accordingly, the notation TB. The func-
tional (2) naturally arises in the theory of fully developed turbulence when
analyzing the spatial intermittency of dissipation energy.(8)

Proceeding on analogy with the Hausdorff and the packing dimension
definitions, Hulsey et al.(10) and Olsen(21) put forward alternative defini-
tions of the r-function. Those definitions are suitable for arbitrary covers y
of the support of u, and are more natural in view of the multifractal for-
malism (1). Let y(6)= { A I , \Aj\ <d} be the cover of the support of u and

where 0q=oo, 1 or 0, when q<0, =0, or >0, respectively. The critical
value of T such that

is the desired alternative(21) to (2). It is usually assumed that rH = TB in
most cases of interest.(10) This hypothesis is confirmed for a broad class of
measures.(21)

Alongside the box counting arguments (1, 2) there is another method
of practical interest for calculating f(a). Take two reciprocal measures u
and u on R+ which means, that the function u ( [ 0 , x)) is inverse to u([0, x))
and conversely. Heuristic arguments lead to the following relations between
the ( T , f ) characteristics of reciprocal multifractal measures:

where q- is the inverse function to (p. A substantiation of (4) for some
class of measures is announced in ref. 24. For example, Cantor's staircase
has a two-point multifractal spectrum: f(x0) = ao = ln 2/ln 3 and f(oo) = 1,
while its reciprocal measure has the spectrum(21) exactly as given by (4):
f(l/a0) = l and f(0) = 0.

This paper is a study of the TB -function for the local time measure
LH(dt) of fractional Brownian motion (FBM) with an arbitrary self-
similarity index He(0, 1). We shall find TB(q) for q^0 in the general case
and for \q\ < oo for Brownian motion ( H = 1 / 2 ) . Interest to this problem
had arisen in connection with Ya. Sinai's query concerning the multifractal
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nature of zeroes in Brownian motion;(15) this was discussed on a Sinai-
Frisch seminar in 1993. The results reported in refs. 5 and 15 show that the
spectrum f(a) is nontrivial for the local time measure of Brownian motion
or, more generally, for functions that are reciprocal to stable Levy subor-
dinators. Information on the spectrum f(x) of Levy subordinators them-
selves can be gathered from ref. 12. Consequently, calculations of TB for
Llf2(dt) show that TB¥=T:H^ —[ — f ] ~ ; that is to say, in particular, the box
r-function does not contain information on the multifractal spectrum of
local time measure of Brownian motion. The fact of irregularity in so
natural a classical object should be of interest in physical applications
where (2) is frequently the basic method(8) for calculating the r-function
which is used to analyze f ( x ) .

The paper is organized as follows. Section 2 contains calculations of
the rfl-function for fractional Brownian motion when q > 0; in Section 3 TB

is calculated completely for Brownian motion; Section 4 is a discussion.
The final statements for Sections 2 and 3 are relegated to the Appendix.

2. RENYI FUNCTION FOR FBM LOCAL TIME MEASURE

Let x H ( t ) , x H ( 0 ) = 0 be a continuous centered gaussian process whose
structural function is E | x H ( t ) - x H ( s ) | 2 = |t-.s|2H, 0 < H < 1 , i.e., xH is
fractional Brownian motion. Denote the local time function x H ( t ) by
L H ( t ) :

It is a known fact(9) that LH can be chosen to be a nondecreasing con-
tinuous function.

The process XH is stochastically self-similar, i.e., X H ( / t ) = )*HxH(t)
where = stands for equality in the sense of finite dimensional distributions.
From this we obtain by using the definition (5) of LH(t):

The self-similarity index of LH also determines the dimension of the
topological support of measure dLH(t), which is in turn identical with the
set of zeroes in the process xH.(13) Let
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be the function of uniform partition of (0, T). By (6)

where the prime means that the summation runs through those indices
k such that Lh(k + 1) — Ln(k)>0. For this reason the study of scaling
properties for structural functions (7) of dLH(t) reduces to the same issue
for sums of the type (8)

Theorem 1. (a) When q ̂  0, one has

(b) When q^Q and N = 2k ,k=1,2,.. . , then

Note. In 1993 U. Frisch gave heuristic reasons in favor of (9) for
integer q^ 1. Special studies of stochastic cascade measures(4,16) show that
limits like (9) and (10) do not necessarily coincide even for q such that
EZN(q, T)<co. The belief that space and ensemble averages can be sub-
stituted one for another leads to a false interpretation of Kolmogorov's
lognormal hypothesis in turbulence.(17)

Theorem 1 is based on two statements to be proved in the Appendix.
The first statement is essentially due to Kahane,(13) although not in the
present form.

Statement 1. For integer q ̂  1 and t ^ 0, the following estimates
of the moments mq(t) = E \LH(t+ 1) — LH(t) \ q are true:

where pt = min(1, t - H ) and the constants aH, bH depend on H only.

Corollary. Where exist constants 1, CA and CH such that
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Let us prove this corollary. Relation (12) follows from the Chebyshev
inequality in the form P(£ > x) < Eq>(£)/(/>(x), where £ = LH(t +1) — LH(t),
and < p ( x ) = exp(x2 / 3)-1 -Ix2/3>0, x>0. For indeed, since i / > ( u ) =1 l-
(1 + u ) e - u is an increasing function, it follows that

It remains to evaluate

Because the moment function is logarithmically convex, one has

From the upper bounds (11) one gets

where mq is the upper estimate for mq in (11) . Combining (11) , (14), and
(15), one finds that the series (14) converges when (2A/3) 3 a 2 e< 1.

All values mv, q ^ 1 are proportional to p,, hence the same is also true
for E<p(E).

We now prove (13). Let u q ( t ) denote conditional moments of £, given
E^O, and let p = P { £ ^ 0 } , then mq(t) = p u q ( t ) . Hence m 2 ( t ) / m 2 ( t ) =
pu2/u2 ^ P. Substituting in this expression the lower estimate of m1 and the
upper estimate of m2, one gets the desired estimate of p, see (13). |

Statement 2. There exist t0 = t0(H) and c = c(H) such that, when
t>t0,

When tH > 16e, one may put c = 30.

Proof of Theorem 1. From ( 1 1 ) it follows that one has mq(t) x t-H

for integer q, i.e., c- t-H< mq(t) <c+ t - H , c- >0. Since the moment func-
tion is logarithmically convex, these estimates still hold for noninteger
q ^ 1. So one gets from (8)
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which yields (9) when q^1. One can prove (9) for all q>0 by merely
verifying that relation for q = 0. From (13) one has

and from (16)

Since e is arbitrary, these estimates prove the first statement of Theorem 1.
We now prove (10). A standard application of the Borel-Cantelli

lemma to (18) gives Z'N(0, T)<N D + 2e, N > N 0 ( w ) a.s., where N assumes
the values in the sequence N =2k, k= 1, 2,.... Hence one gets

considering that e is arbitrary. The value of E'N(0, T) determines the number
of elements in a uniform partition of (0, T) where the local time increment
is different from zero. Therefore d ^d -

o x , where d-
ox is the lower box

dimension of Z(xH, T), the set of zeroes or XH in (0, T). However, d -
ox

is larger than the Hausdorff dimension of Z(xH, T), which equals D. (13)

Consequently, we get

We are going to show that

One has Z N (1 , T) = L H ( T ) . Consequently, (20) is true, when p := P(L(T)
= 0) = 0. For, by virtue of (6) the events An={LH(T/n) = 0} have the
same probability p. Now event A1 entails An, n>1. Consequently, A1c.
lim sup An = Aa3. Event A^ belongs to the a-algebra of events generated
by x H ( t ) in an infinitely small vicinity of t = 0. This algebra is trivial (see,
e.g., ref. 18 where a canonical representation of { x H ( t ) , t>0} was derived).
It follows that p(Aao) = 0 or 1. Now one has, A1<=A2 . . . and p ( A i ) = p.
Consequently, p(Aao) = p =0 or 1. Since L(T)^0 a.s., one has p = 0.

Let tN(q) :=log E N (q , T)/log AN. The function q ^ T N ( q ) is concave.
Consequently, iN(q), q^1 ( 0 < q < 1) lies below (above) the straight line
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that connects the points (q,, TN(q,)), q ,=0 and q2=1, i.e., T N ( q ) ^
TN(0)(1 -q) + r N ( 1 ) q , q ^ 1 . However, lim N ( 0 ) = -D a.s. as N=2k-> oo,
while l i m T N ( 1 ) = 0 a.s. Consequently, lim supA,=2*^QO T N ( < ? ) ^D(q- 1),
q^ 1, and

From (17) it follows by the Chebyshev inequality and the Borel-Cantelli
lemma that

Hence lim infAr=2*-,oo TN(q)^D(q — 1), q^1. Thus, there exists a.s.
lim TN(q) = TB(q), q ~ 1 , as N = 2k-» oo, and TB(q) = D(q — 1).

Similarly, take q1 = 1 and q2 = 2 in the case q e (0, 1). Let lN(q) = 0
be the equation of the line that connects the points (qh T N ( q i ) ) , then
rN(q) ^ l N ( q ) , q e ( 0 , 1). It follows from the above that lN(q) -> D(q — 1) a.s.
Hence lim supAf=2*-.oo T N ^ ( q ) ( q — 1), Q < q < 1 . The use of (21) will
yield the second statement of Theorem 1.

3. RENYI FUNCTION FOR LOCAL TIME IN
BROWNIAN MOTION

The process xH(t), H= 1/2 is markovian. This allows one to define
TB completely. Before we state the relevant result, we refine the estimates
(12, 16) in order to be able to judge how far they may be in error in any
particular case.

Statement 3. When H= 1/2,

where x + =x.1 x > 0 and {ni} are standard independent gaussian variables.

Corollaries, (i) One has
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(ii) If F t ( x ) is the distribution of £ = Ll/2(t +1) — L 1 / 2 ( t ) , then
dF,(x)/dx = S(x)( 1-q t) + f1(x), where

and

Proof. Let M(a,b) = max(x 1 / 2 ( t ) , t e(a,b)). According to Levy,(11)

L 1 / 2 ( t ) and M(0, t) are stochastically equivalent processes. Hence

The last relation incorporates the fact that the increments of x 1 / 2 ( t ) are
stationary. Because x 1 / 2 ( t ) is markovian, M(0, 1) and M( — t,0) are inde-
pendent. One also has M(0, a) — |a|1/2 |n|, where n is a standard gaussian
variable. That proves (22). Relation (23) immediately follows from (22),
because qt = P ( \ n 1 \ n 2 \ > ^ / ~ i ) , while n1/n2 has a Cauchy distribution.
Relation (24) obviously follows from (22). |

Let Jk = [ J k , J k + 1 ) be consecutive integer intervals in which the
Wiener process w(t) = x l / 2(t) has zeroes, j1= 0, while lk is the increment of
local time Ll/2(t) in Jk. Suppose Sk + jk is the position of the first zero of
w(t) in Jk, 0 ^ d k < 1 , 6 1 = 0.

Statement 4. The sequence ( l k , ^ k+1) forms a homogeneous
Markov chain with a transition probability density p ( l , d | d ' ) = p(l k=1,
<$k+1 =<> l lk-1 =l', fc = d') which is strictly positive on the entire phase
space [0, QO) x [0, 1), and

where
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while one-dimensional invariant distributions are defined by the densities

and

The proof of Statement 4 is relegated to the Appendix. It applies to all
processes L(t) that are reciprocal to stabile Levy processes of index
< X E ( 0 , 1 ) .

Theorem 2. For local time measure of Brownian motion there is
the a.s. limit

Proof. Let q> -1. One has EN(q, T) = ̂ 2Zk=1l /£, where VN is
the number of intervals Jk = [ j k , jk + 1) of a total of N= T/A that contain
zeroes of Brownian motion. It follows from Statement 4 that the sequence
{lk} can be embedded in a homogeneous Markov chain {(lk,8k + 1)} with
a positive transition probability density and a positive stationary density.
From this one concludes(19) that, almost surely,

It was shown above, see (19), that vr-> oo a.s.
Consequently, v-1 ££N

=1 l
q-> cq a.s. and so
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Let q< — 1 and {lk} be nonzero increments of local time in subintervals of
(0, T) of length 1 /N. Using the inequality

one gets n^^(Zl^Mh)llh. Choose h so that \q\h = 1 -e. From (28) it
follows that E l N =Jk ( 1 ~ ' : ) < ^N - 1 < N > N 0 ( w ) .

Hence ZJk
M <N1/h = N M I ( 1 ~ e \ N > N 0 ( w ) . Since e is arbitrary, we

get

We are going to prove the converse inequality by using this author's
results.(15) First, we delete in the interval (0, T) all adjoining intervals of
the zero set Z(w(t), T) that are longer than AN. The remainder will consist
of connected intervals dk (A-clusters of Z). The points of the lattice { i A N }
divide the cluster dk into intervals 3kl,...,Sk/j(k}, n^-1. The increments of
local time in these intervals are identical with the increments of Ll/2(dt)
in the corresponding cells A ( N ) ^ d k J . Thus, L ( d k ) = l k 1 + • • • + l k t l ( k ) ,
where lki = L(5ki). By (29), [L(«$*)]-'" <1^M + • •• +l^,, \q\ > 1, and
*L\" lk W >Z\ -L(& k ) ' }~ M , S k € ( 0 , T). From ref. 15 it follows that, for any
e>0, r[L(<5 f c)]- |» l>W l« |-e , N > N 0 ( w ) , as N = 2p->oo. Consequently,

which proves Theorem 2.

4. DISCUSSION

It was shown above that the Renyi function for the local time measure
of Brownian motion is

where a. = 1/2. Indeed, one can assert (see ref. 15 and the proof of State-
ment 3) that (30) holds for measures ^(dt) that are reciprocal to stable
Levy processes Hx(t) with index <xe(0 , 1). What is the relation between
TB(q) and the multifractal spectrum of ^(dt)? Let {Se} be the cover of the
topological support of ^(dt) with e-clusters, 8e. The cover is obtained by
eliminating from a line all open intervals of length ^ £ between the points
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of the support. Following (3), we found(15) such critical values T(
C"}(q) of T

that

where

The e-clusters for j% have lengths ranging between e and £1/<x in order of
magnitude. However the Renyi functional (2) with |4|=e associates all
increments L(6e) with intervals of length e. For this reason the use of a
functional like (31) to calculate the r-function becomes essential to describe
the multifractal spectrum of Z£a. A similar situation must occur for cascade
measures with an infinite number of generatrices. For these models see
refs. 14 and 24.

Box counting arguments show(15) that the multifractal spectrum of
^J(dt) is

The justification of (33) is supplemented in ref. 5 with the case <x= 1/2.
It is easy to see that (32) and (33) are consistent, since f(x)*(q) =

i^(q). However, T c r ( q ) ¥ : T B ( q ) . For this reason a formal application of
multifractal formalism to IB leads to the conclusion that Holder's
exponents for J^(dt) are in the interval (a, 2a) rather that in (a, 1.5a). We
note that the r-functions (30) and (32) lose smoothness at different points:
q= — 1 and q= — 2, respectively. The former (q= — 1) is critical for the
existence of negative moments of ^(A). However, because of the strong
dependence between La(<S£) and Se, that critical point is considerably
shifted to the left when (31) is used.

We now turn to the formalism of reciprocal measures. The multifractal
(m.f.) spectrum of paths for Hx, ae(0, 2) was found in refs. 12 and 22. We
note however that the m.f. spectrum of an increasing function and that of
the associated measure are generally different. According to ref. 12, q( t) has
a smoothness (Holder's exponent) of order h at t0, if there exists a constant
c>0 and a polynomial p,o of degree at most [h] such that \q(t) — p,0(t)\ ^
c \t — t0\

h in a neighborhood of t0. By definition, the supremum of such h
is a local dimension of q(t] at the point t0. But, for the measure dq(t), the
degree of p, is always chosen to be zero. Therefore, the functional m.f.
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spectrum of Ha must be identical with the m.f. spectrum of dHx when h < 1
and must be not less that this when h ̂  1.

The paths of Ha, 0 < x < 1 are described by a multifractal spectrum(12)

of the form

Hence the m.f. spectrum of dHx must be px(h) = a.h for h e(0, 1) and
^ a(h)<<ah for 1< h<1/a. But then, the formal m.f. spectrum of the
reciprocal measure is <p a(h) : = hj<p a(1/h) = a for h>1 and 0 ( p ^ h ) ^ ^ for
a < h < 1. In turn, the Legendre transform </>a is q>*(q) = — oo for q < 0 and
q — oL^q>£(q)^:Oi.(q — 1) for q>0. The functions q>^(h) and q>*(q) are
sharply at variance with (33) and (32), respectively, indicating that the
formalism of reciprocal measures is inapplicable to ^(dt).

This circumstance should be borne in mind when describing the solu-
tion structure of the inviscid Burgers equation with random initial velocity
v(t), refs. 25 and 26. The solution can be described in terms of the convex
hull C(t) of the function y(t) = t2/2 + l'0v(t) dt, t>0. It has recently been
shown(2) that, when v is a Wiener process, the inverse (reciprocal) function
of C'(t), is a Levy process H(t) with the characteristic function

The Levy intensity function for jumps in H ( t ) is ).(x) = ( 2 n ) - 1 / 2 x - 3 / 2 x
exp(—x/2), this being different in the exponential factor alone from the
same characteristic of the process Ha, <x= 1/2, A(x) = cx - 3 / 2 . That circum-
stance does not affect the multifractal properties of Levy processes.(12)

Therefore, (34) with a =1/2 describes the functional m.f. spectrum of the
solution of the Burgers equation for a fixed t = t0. It is of interest to know
a m.f. structure of the support of the reciprocal measure dC(t), (see refs. 25
and 26). The support consists of the so-called Lagrange regular points,
which give the positions of those fluid particles which have not collided
with other particles up to the time t = t0. In view of the above, the m.f.
spectrum of these points in terms of dC(t) must be described by (33) with
a =1/2.

5. APPENDIX: AUXILIARY STATEMENTS

Proof of Statement 1. This proof essentially relies on Kahane's
spectral technique(13) developed by him to study local time in fractional
Brownian motion.
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The local time measure dLH(t) can be defined in terms of generalized
functions:(13)

For this reason one has for integer q

where dqx = dx1,...,dxq. Since xH(t) is gaussian,

where

Let us use the spectral representation of x H ( t ) ( l 3 ) in terms of complex-
valued white noise Z ' ( y ) :

where d2
H= — 4F( —2H) cos nH. Hence

where L0= — £* A/, s0 = 0. Combining ( A l , A2, A3), one gets

Estimate of mq from Above. Let q> be a smooth finite function
<?eC°°( x\ <1 ) , <p^0, <p(0) = l and cp(t) = \ eiu'p(u) du.
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The use of Schwartz' inequality gives

where

i.e.,

Let t<s1--- <s p <t+1. Put in (A6), successively, s = sk, £ = s k + 1 — s k ,
k=1, 2,.... Then, since <p is finite, one gets a series of inequalities:

When t ^ 1, the constant in front of A0 vanishes, because s0 = 0, sk > t > 1,
while sk + l—sk< 1. The series of inequalities (A7) will then be supplemented
with (A6) where s = 0 and e = t:

When t< 1, (A7) will be supplemented with (A6) where e = s1 and s = 0,
i.e.,
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Add all estimates of V, q in number. When t > 1, one gets

where new variables have been introduced:

L*=Iq-1li, + V and l=1 .
When t< 1, one has 1 = 0, and the terms t2H^2q will be replaced with

S 2 H A * < A* = A0. Let us integrate the inequality

over A = (A,,..., Aq) for s = (s1,..., sq) in the cone Kx = {s: t <s1 < • • • <sq <
t + 1}. New variables, A*, will be used when integrating the right-hand side.
Then one gets for t > 1

When t < 1, the factor t-H will be replaced with s1 - H. Integration of (A8)
over the cone Kn yields

where D = 1 — H. When t<1, the factor t-H is replaced with 1. The cube
[t,t + 1]q can be divided into q! cones Kn. Therefore (A4) combined with
(A9) give the right part of ( 1 1 ) with aH = ( c H / ( 2 n ) ) l / 2 (1 - H ) - 1 and cH in
(A5).

Estimate of mq(t) from Below. One has
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where A* = YA V The use of Cauchy's inequality gives

Hence

and mq( t )^(2n) - q (2n/q)q / 2 I, where

Finally, one gets the left part of ( 1 1 ) with bH = ( 2 7 ) - l / 2 (1 - H ) - 1 .

Proof of Statement 2. Let us estimate q, :=P(L(t + 1)- L ( t ) > 0 )
from above.

where P_a is the conditional measure of x H ( t ) given X H ( 1 ) = —a. Since
xH( t ) is gaussian, one has

where b(s, s') = ExH(s) XH(S'), and y(s) is a centered gaussian process that
is independent of XH( 1), and

Using (A10) and the requirement x H ( 1 ) = a, one gets
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where p = max s e / l (b H ( s , 1)- 1) = max s e^(\s\2 H- 1 -(s- 1 ) 2 H ) /2 i.e., p<
1/2 for t > 1. Consequently,

where the second term on the right is obviously less that 6. Fernique's
estimate(7) will be used for the first term in (A12):

where x > ^/1 +4 log2, c = 2 + ,/2, o-2 = maxje j Ey2(s) and

From (A10) one has OZ
A <maxseA E \XH(S} — x H ( 1 ) \ 2 = \A 2H and, from

(A11),

Hence (A13) yields

where

Let x and d be such that A :=x \ A \ H c ( H ) <6, and B := 10 J^ e~"2/2«5.
Then one gets from (A12) and (A13) the result c/,^26. The above
inequalities can be satisfied by setting x= \2H In M||1/2 and 8= 15 |^|H x
|ln |J||1/2. For indeed, when t = \ A \ - 1 ^ 2 , one has
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The estimate of B is based on Komatsu's inequality: (11)

Fernique's estimate is true when x = \2H\n |zf| |1/2> v/5, i.e., when t2H>5.
Thus, q,^2S = 30t - H nl when t2H>5. The statement is proven.

Proof of Statement 4. Markov Property of the Sequence
( I k , ^k+1). The function H(x), which is continuous on the right and is
reciprocal to the local time function L 1 / 2 ( t ) , is a stable Levy process of
index a =1/2, ref. 11. The process H(x) has independent increments and
possesses the strict Markov property, i.e., the process //*(X) = H(T + x) —
H(t) has the same probability structure as H(x) for any stopping time x
and is independent of {H(x), X<T}, ref. 1.

Suppose <5: =0, H 1 ( x ) = H(x). Let us define recurrently the quantities
{T„ d„ H t ( x ) } , where the function Hi is stochastically equivalent to
{H(x), x ^ 0 } . One has

The quantity T, determines the stopping time for the (continuous on the
right) process H,(x). For this reason, if {H,(x), x>0} = { H ( x ) , x > 0 } ,
then (Hi+l(x), x>0} = {H(x), x>0} and H1+1 is independent of
{ T / > ^ i + 1 } . The distribution of |r,-, S i + 1 } is completely specified by the
quantity Si and the process {H,(x),x>0} = {H(x),x>0}. For this
reason the sequence {T;, S i + l} is a Markov chain. It is easy to see that, if
one denotes by Jk= [j, jk + 1) successive intervals of an integer lattice
where Ll/2(Jk) = l k ^ = 0 , then ik = lk and Sk + 1 + jk is the first zero of xl/2(t)
in Jk+1

The Distribution of ( l k , d k + 1 ) . Let Hx(x) be a stable Levy process
of index a e(0, 1) that is continuous on the right, r(h) = inf{h>0,
Hx(x)>h} is the time of the first exceedance of level h, and K(h) =
Hx(r(h))-h is the exceedance itself. When a =1/2, then Hl/2(x) = H(x)
and the distribution of (r(a), (K(a)}), where 0^ {K} < 1 is the fractional
part of K, is identical with the conditional distribution of (lk, 6 k + 1 ] given
8k= 1 — a, a e(0, 1]. It is therefore sufficient to find the distribution of
(T(a),K(a)).
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For an arbitrary subordinator £(t) (a Levy process with range of
values [0, oo)) one has(1)

where

When £(t) = H,(t), the distribution of Ha(t) has the density

and the Laplace transform is

where c is a normalizing constant. Hence K(x, y) = x + (yc)* and

Recall that

and

The last relation obviously follows from (A15). Combining (A16), (A17),
and (A18), one gets

where the convolution is over the parameter a. From this one finds the
conditional density p(lk, Sk + l \dk= 1 — a) for the process La(t) that is
reciprocal to H(x):
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When a= 1/2, the distribution p(^(a \ t) can be found in explicit form: ( l l )

(2?r) - 1 / 2 ta - 3 / 2exp( — t2/(2a)) where the normalizing constant is c = 2.
Therefore, we find an explicit form for (A19), when ot= 1/2:

The last expression yields (25).
In the general case <x e (0, 1), one finds from (A19) and (A14) the one-

dimensional distribution of K(a):

The Invariant Distribution of (lk, rfk+1). The states of the chain
( l k , 3 k + 1 ) are only governed by the state of the second coordinate at the
preceding step. For this reason it is sufficient to find the invariant distri-
bution of dk. We show that, when <x e(0, 1), the measure do(d) =
(1 - a) d-" d{!, 0 s: d < 1 is invariant for Sk. In view of (A20), it is required
to verify

Expanding (n + S + 1 — a) -1in powers of 1 —a and integrating this, one
obtains for the left-hand side: Z*=0 [(n + <$) - x-(n+<$ + l)-a](1 -a)
which is identical with a'(8). By (A19) the conditional density of lk given
6k = 1 — a is

Hence the invariant distribution of lk is

In view of (A14), one has p < f ( t ) = car(2-a) ^(t - 1 / a) t-2x/x, where
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When a =1/2, one obviously has (26). The Laplace transform of <p is
p*-2e-ucrt and so (p ( t ) ^ t i - ^ / r (2 -2a . ) , t-»oo, or p(a)(t) = c°T(2-a)/
F(2-2a). (1+o(1)) , t->0. Therefore f t q p f ^ t ) dt <w, W q> -1.
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